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Abstract. We describe two measures of the local atomic density in a monatomic crystal. A
new measure(ρf ) has the form of a function of the sum of inverse powers of the neighbour
distance, and it is accurate to 2% for six simple crystalline reference structures ranging from
diamond to face-centred cubic. For any periodic structure,ρf reproduces the global average
density exactly for any uniform dilation or compression in the limit of an infinite cut-off, and
to high accuracy with a smooth cut-off. We compare it with a Gaussian measure(ρg) of local
density for large constant-volume strains of the six reference structures. The changes inρf are
an order of magnitude less than the shear strains for bond-length changes of<10%. However,
ρg is even less sensitive to constant-volume strains.ρg is also transferable between structures,
provided that a constant self-term (an on-site term) is included in the density. The measure of
local density is primarily intended for atomistic simulations of inhomogeneous systems in which
the atom–atom interactions or other terms describing the energy depend on the local volume.

1. Introduction

It has long been recognized that the total energy of a metal is very sensitive to the volume
which atoms occupy. Over thirty years ago, the energy of simple s–p-bonded metals was
treated by second-order perturbation theory, using pseudopotentials [1], and shown to be
described by two terms: the first and largest was a function only of volume,F(V ), while
the second was a pairwise sum of interatomic potentialsφ(rij ;V ), also depending on the
volume. Calculations using only the interatomic potential at constant volume are numerous
in the literature, and were the state-of-the-art method of comparing the energy of different
crystal structures or calculating phonon frequencies before the advent of fully self-consistent
calculations which of course go beyond second order in perturbation theory. Although such
pair potential calculations were often remarkably successful, the neglect of the volume-
dependent terms, both in the pair potential and inF(V ), led to the well known inconsistency
in the bulk modulus when calculated by taking theq → 0 limit of the longitudinal phonon
frequency as compared to direct differentiation of the full total energy with respect to volume
[2–4]. The root of the problem is that the volumeV which appears in perturbation theory
(for example in the definition of the screening function) refers to the global volume of the
system—that is, the inverse of the global mean density of conduction electrons. Yet we
know physically that screening in metals is rather local (the Fermi–Thomas screening length
is less than a nearest-neighbour distance), so a realistic expression for the energy of local
rearrangements of atoms, which may be associated with local regions of compression or
dilation, should reflect thelocal density change rather than be dependent on some mean
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density defined over a macroscopic region. A similar difficulty arises in the application
of the generalized pseudopotential theory of Moriarty [5, 6] for transition metals, in which
terms arise which involve volume-dependent interatomic potentials, including also three-
and four-body potentials.

Rosenfeld and Stott [7] demonstrated a way around this inconsistency by defining the
volume dependence in a localized way. They defined a local electron density as a function
of the local ion density by using a Gaussian envelope function to weight the contribution of
neighbouring ions to the density. We use the same procedure and define the local atomic
density (the reciprocal of the local volumeVi)

ρ0
g(i) = 1/Vi =

∑
j

fg(rij ) (1)

at an atomic sitei as a sum over neighbours of pairwise Gaussian functionsfg(rij ), suitably
normalized. Note that the on-site termi = j is included in this summation, unlike in other
formulations of the local density which are used in the effective-medium theory (EMT)
[8] or embedded-atom models (EAM) [9]. In these latter formulations, the host electron
density at a site is written as a sum of atomic electron densities from neighbouring sites,
omitting the self-term. Furthermore, the pair potentials in these formulations are volume
independent. Within the context of deriving the EMT or EAM, the density is defined in
terms of superimposed atomic charge densities, and one is not justified to use a definition of
local volume such as that in equation (1); nevertheless one feels that these theories should
correspond to the second-order pseudopotential theory at some level.

To remove the inconsistency, the total-energy expression from second-order perturbation
theory is modified to ensure that the pair potential andF(V ) become functions of the local
atomic environment viafg(rij ). In practice, following Rosenfeld and Stott one would
symmetrize the pair potential with respect to the local volume at each of the two atoms:

φ(rij ) := (φ(rij ;Vi)+ φ(rij ;Vj ))/2. (2)

Besides the calculation of phonon frequencies discussed in [7], further applications
would be to alloys, in which the local electron density will differ in general from that of the
pure elements comprising the alloy; the volume and heat of formation are very sensitive to
this difference [10].

There are, however, questions associated with this approach. Because of the functional
form of fg(rij ), in the case of homogeneous dilations or compressions of the perfect lattice,
the local density which it defines will not remain equal to the global density, even if it is
constrained by normalization to be so at the equilibrium volume. Hence for volume changes,
the energy predicted by such a local representation of the energy must depart from the
standard result of second-order perturbation theory, leading to errors even though the model
is now internally consistent. We discuss this geometric problem here. A second question,
which we do not address here, is the quantitative accuracy of the resulting descriptions of
the total energy.

The physical correctness of the idea of a local volume-dependent energy plus a local
volume-dependent pairwise interaction is a motivation for trying to improve the description
of the local volume in order to resolve the above-mentioned difficulty. A further motivation
is the availability of explicit forms forF(V ) derived from non-local pseudopotentials by
Walker and Taylor [11, 12], which only need a good definition ofV for their exploitation.
Since these pseudopotential models have proved very successful in the calculation of phonon
spectra at constant volume, there is every reason to think that a consistent, volume-dependent
formulation will be of more general use.
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An alternative approach to Gaussian envelope functions for defining the local electron
density is based on the observation that the following measure of local density at atomi

would be exact under homogeneous density variation:

F (0)m = (S(0)m )3/m

S(0)m ≡
∑
j

1

rmij
.

(3)

The simplest version of this equation withm = 3 does not converge with increasing
number of included neighbours, and would need to be cut off very sharply to be of any use.
However, with higher values ofm the sum converges in real space even without a cut-off.
We use the superscript 0 to indicate that the functions are summed to convergence without
a cut-off; this superscript will be dropped when a cut-off is implied. The essential property
of this measure of density is that it scales as 1/β3 if all interatomic distances are multiplied
by β, and so reproduces the mean density at all dilations. This property ofF (0)m does not
requirem to be an integer and is also satisfied by linear combinations ofF (0)m with different
m. As a corollary to this it is satisfied in particular by(F (0)m − F (0)n )/(m − n) asm → n

and hence by the functions dF (0)/dm, a property that we shall use in this paper.
Deyirmenjianet al [13] recently madeab initio simulations of highly strained aluminium

containing a lattice of vacancies. In interpreting the pattern of strain, they emphasized the
importance of the tendency to conserve local volume. This feature is not captured by simple
empirical models such as the Sutton–Chen potential [14], which gave qualitatively different
results. Subsequently Deyirmenjianet al [15] applied a combination ofF6 and F7 to
describe the local atomic density and used it in a modified Sutton–Chen potential, resulting
in a markedly improved description of theab initio stress–strain behaviour. At that time
there was no systematic attempt to optimize the choice ofFm but the combination was fitted
to the density of face-centred cubic and diamond lattice structures. Unpublished calculations
indicated that values ofm between 5 and 7 were suitable for this purpose, and that including
more than two different values was not helpful. Furthermore, the coefficients ofF6 andF7

for example were nearly equal and opposite in sign, suggesting that a parametrization in
terms of dF /dm might be fruitful.

The main purpose of our paper is to examine a new parametrization of the local
density which we denote asρf , involving a linear combination ofFm and dF /dm, and
to compare it with a Gaussian definition (ρg) over a range of crystal structures under
homogeneous dilations and shears. The criterion of success for a local density expression
under homogeneous strains is that the volume/atom predicted differs by less than 1–2% from
the true volume/atom, even under homogeneous strains which are an order of magnitude
larger than this. We suggest that in this case the resulting density function will be of use in
any of the expressions for total energy which depend on the density.

The plan of the paper is as follows. In the following section we present theρg- and
ρf -formulae that we have investigated for defining the local density. In section 3 we
describe how we obtained a three parameter expression forρf and then how we tested the
resulting expression alongside the Gaussian definition of local density over a wide range
of volume-conserving shears, starting from a database of six perfect crystal structures. We
also obtain the predicted local densities in the neighbourhood of a vacancy and of the
(100), (110) and (111) surfaces in the face-centred cubic structure. In section 4 the overall
quality of the predicted local densities is compared and discussed and we conclude with our
recommendation in section 5.
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2. Expressions for the local density

The quality of reproducing the true density of the lattice at all homogeneous volume
expansions or compressions is referred to in what follows asdensity scaling. In order
to do this a function would have to satisfy the following equation for allβ:∑

j

φ(rij ) = β3
∑
j

φ(βrij ). (4)

Consider theρg-measure of local density given by equation (1). The pair function in it
is given by

fg(r) =
(
α

π

)3/2

exp(−αr2). (5)

This does not satisfy density scaling. Nevertheless, any correctly normalized pair
function can be made to satisfy density scaling asymptotically if it decays slowly enough
with distance (e.g. ifα is small enough) or in the limit of high density. The inclusion of
the j = i term in the summation greatly accelerates the approach to density scaling at high
density. To see this it suffices to consider that in the limit in which the function varies
slowly on the scale of interatomic distances, the discrete summation can be represented by
an integral weighted by the constant density of lattice points. The integral is independent
of density by virtue of the normalization, so the result gives directly the density of lattice
points. This desirable result is only of practical use if the value ofα for which it becomes
accurate is such that the decay length is not unphysically large on the scale of metallic
screening (more than a few lattice parameters). Note that these considerations hold for any
choice of pair function to defineρ, not only the Gaussian one.

For practical computations, it is necessary to apply a cut-off to the functions which are
summed over lattice points. Thus the summations we consider are modified by a cut-off
function fco(r) as follows:

ρg(i) =
∑
j

fg(rij )fco(rij ) (6)

and

Sm(i) =
∑
j 6=i

fco(rij )

rmij
. (7)

We have chosen the following soft cut-off function, which goes smoothly to zero
betweenRl andR:

fco(r) =



1 if 0 6 r 6 Rl

1+
(

exp

[
−0.6

(
2(r − Rl)
R − Rl

)5/2]
− 1

)
× (2(1− exp(−0.6)))−1 if Rl 6 r 6 (Rl + R)/2(

1− exp

[
−0.6

(
2(R − r)
R − Rl

)5/2])
× (2(1− exp(−0.6)))−1 if (Rl + R)/26 r 6 R

0 if R 6 r.
(8)
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We now introduce a new measure of the local density:

ρf (i) = C1Fm + C2
dFm
dm

(9)

in which

Fm = (Sm)3/m. (10)

We have omitted for simplicity the expliciti-dependence inSm(i) andFm(i) because
in this paper we shall only be considering lattices on which all sites are equivalent. The
derivative ofFm is given by

dFm
dm
= −(3/m2)Fm

[
ln(Sm)+mS(1)m /Sm

]
(11)

where we have made the definition

S(1)m :=
∑
j 6=i

fco(rij ) ln(rij )

rmij
. (12)

The three parametersC1, C2 andm were fitted as described in the following section.
Because of our introduction of a cut-off function, the sums over neighboursj need only
be carried out to a radiusR. The price that we have to pay is that the density scaling
of Fm and its derivative is no longer exact. We shall see below the magnitude of the
error which is thereby introduced. As cut-off parameters we chose first a long-range pair
(Rl, R) = (4.5, 5) in units of a reference nearest-neighbour distance, which we shall refer
to as rnnref. In addition we tested the shorter-ranged cut-off(Rl, R) = (2.7, 3.0). For
simplicity we denote the low and high cut-offs by lco and hco. Since we have also tested
two values ofα, we consider altogether six candidate measures of local density which we
denote byρf (hco), ρf (lco), ρg(hco;α = 1.0), ρg(hco;α = 0.5), ρg(lco;α = 1.0) and
ρg(lco;α = 0.5).

3. Calculating and testing the local density

In future work one should use the same best form for the local density functionρ(i) for
calculations on homogeneous and inhomogeneous systems. However, because there is no
absolute meaning to local density, the quality of theρ(i) as a geometrical description of
local density can only be assessed in the case of perfect primitive lattices—that is, lattices
of equivalent sites—in whichρ(i) should reproduce as closely as possible the global mean
densityρexact. As a measure in any particular case of the quality ofρf or ρg, we consider
the volume deviations1Vf and1Vg respectively, where

1Vf = ρexact/ρf − 1 (13)

and

1Vg = ρexact/ρg − 1. (14)

This choice is of course arbitrary; the density deviations would have been just as good.
Our fitting and evaluation procedure is based on the six three-dimensional lattices which

were used in the database ofab initio calculations set up by Robertsonet al [16, 17], namely
diamond (DIA), simple cubic (SC), the vacancy lattice (VAC), simple hexagonal (SH), body-
centred cubic (BCC) and face-centred cubic (FCC). These reference structures are defined all
to have the same nearest-neighbour distance,rnnref, and they span the range of coordination
from 4 to 12. Further details are given in table 1. Having the same nearest-neighbour
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Table 1. 3D Robertson structures, together with: the unit-cell lengthsa, b, c, assuming that
rnnref= 1; the exact density,ρexact; the number of atoms per unit cell,Na ; the total number of
atoms within a cut-offR = 5.0, Nhco

tot ; and the total number of atoms within a cut-offR = 3.0,
N lco

tot .

Structure a b c ρexact Na Nhco
tot N lco

tot

Diamond, DIA 4/
√

3 4/
√

3 4/
√

3 0.649 519 05 8 356 86

Simple cubic, SC 1 1 1 1.0 1 514 122

Vacancy, VAC
√

2
√

2
√

2 1.060 660 17 3 570 128

Simple hexagonal, SH 1
√

3 1 1.154 700 54 2 628 138

Body-centred cubic, BCC 2/
√

3 2/
√

3 2/
√

3 1.299 038 11 2 700 168

Face-centred cubic, FCC
√

2
√

2
√

2 1.414 213 56 4 766 176

distance constrains the structures to span a density range from 0.649 52 (DIA) to 1.414 21
(FCC) in units ofr−3

nnref. The natural density in metallic structures will be close to that of
the FCC or BCC lattices, which have the highest densities, but the local densities will be
much lower at free surfaces.

The parameterα of ρg was not fitted, but two values were applied, namelyα = 1.0/r2
nnref

andα = 0.5/r2
nnref. Guided by the previous work in [15], a valuem = 6 was used. The

quality of the results is insensitive to variation ofm from 6 to 7, so we chose the integer
value for simplicity. We then fitted the parametersC1 and C2 to reproduce exactly the
FCC and DIA densities with the cut-off functions operating. In this way we obtained the
parameters

C1 = 0.065 691 948 C2 = −1.173 9034 (15)

and

C1 = 0.035 978 179 C2 = −1.234 5637. (16)

for the long- and short-ranged cut-offs respectively.
Further tests have been made with the original formulation which did not use the

derivative dF/dm and therefore required four parameters rather than three, but this does
not lead to any significant improvement in the quality of the fits.

Next we tested the extent to whichρf and ρg can preserve the density under strictly
constant-volume homogeneous shears. The lattice vectors under a simple shear of sizes

along thel-direction parallel to them-plane are given by [18]

S = I+ slmT (17)

where the superscript T indicates the transpose.
Four shears of this type were examined here; these are now listed.

(i) The C44-shear, a simple shear along the(100) direction parallel to the[001] plane,

SC44 =
( 1 0 s

0 1 0
0 0 1

)
. (18)

(ii) The C ′-shear, namely a shear along the(110) direction parallel to the [110] plane,

SC ′ =
( 1+ s/2 s/2 0
−s/2 1− s/2 0

0 0 1

)
. (19)
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(iii) The twinning shear, namely a shear along the(211) direction parallel to the[111]
plane,

Stwin =
( 1− 2K −2K −2K

K 1+K K

K K 1+K

)
(20)

whereK = s/(3√2).
(iv) The tetragonal shear for which

Stet =
( 1+ s 0 0

0
√
(1/(1+ s)) 0

0 0
√
(1/(1+ s))

)
. (21)

Results were obtained for a range of shearss andK from −0.5 to 0.5.
Finally we have applied the density functions to calculate the local density at neighbours

of a single vacancy and the three low-index surfaces in the FCC structure. The aim here
is to obtain a local density in a case for which not all of the atoms are equivalent, which
is what will be needed in applications. The energy of formation of a vacancy and surface
energies, calculated by using these local densities, will be the subject of future investigation.

-0.8 -0.4 0.0 0.4 0.8 1.2 1.6
-0.1

0.0

0.1

-0.1

0.0
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0.0

-0.8 -0.4 0.0 0.4 0.8 1.2 1.6
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simple cubic
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simple hexagonal

body-centred cubic

face-centred cubic

Figure 1. The variation of1Vf (solid line),1Vg(α = 1.0) (short-dashed line),1Vg(α = 0.5)
(long-dashed line) with(V − V0)/V0 = r3

nn − 1 whereV is the exact volume of the structure
andV0 is the exact reference volume. Here the lower cut-offRl = 2.7, R = 3.0 is used.
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4. Results and discussion

4.1. Volume changes

We first consider the results for pure volume changes. Recall that in this case, by including
a cut-off function as a factor ofρf , we have forfeited its intrinsic ability to describe the
density exactly in FCC and DIA structures at all volumes. Figure 1 shows the effect of the
lower cut-off on the error in the local volume, expressed as a fraction of the exact volume
per atom (equations (13) and (14)). The FCC and DIA cases are extremes in the sense
of having maximum and minimum coordination, and this is reflected in the fact that the
functions generally perform best in terms of volume dependence for FCC and worst for the
DIA structures.

The worst error inρf (hco) is for the DIA structure and amounts to about 3% at the
extremes of doubling the volume or reducing it by 80%. This embraces also the BCC,
SH, SC and VAC structures, for which nothing was fitted, which demonstrates a surprising
degree of transferability. The density scaling with the low cut-off (figure 1) is naturally
worse than with the high cut-off for theρf -functions, as the truncation destroys their intrinsic
density scaling. Nevertheless the error inρf (lco) is still within 3% over a range of about 20%
volume changes in all of the structures. Theρg look very different depending on their decay
parameterα, as seen in figure 1. Withα = 0.5, which was by far the best representation

Figure 2. The variation of1Vg(α = 1.0) with the shear strain with the lower cut-off
Rl = 2.7, R = 3.0 for the six 3d structures from table 1 indicated in each panel. Solid
line: simple shear; short-dashed line:C ′-shear; long-dashed line: twinning shear; chain line:
tetragonal shear.
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at the high cut-off,ρg(lco;α = 0.5) is now truncated abruptly, its normalization is spoiled,
and it is in error by 5% at all volumes in the FCC structure. By contrast, inρg(lco;α = 1),
the cut-off falls well out in the tail of the Gaussian, normalization is preserved, and it gives
nearly the same results as with the high cut-off.ρg(lco;α = 1) is the only one of the lco
functions which does not show rapid changes in slope as a function of density, associated
with shells of neighbours passing through the cut-off region. One can imagine that such
changes in slope might have spurious effects on the forces in an energy minimization or
molecular dynamics calculation with an energy functional involving the local densities. For
this reason, the Gaussian measure withα = 1 appears the most satisfactory of the set.

4.2. Homogeneous shear strains

Since all lattice sites remain equivalent, an ideal density function would preserve the atomic
volume exactly at all strains. As in the case of volume changes, the most accurate measure
is ρg(hco;α = 0.5), which predicts the correct volume over the entire range of shears
in all structures to better than 1%. However,ρg(lco;α = 1) (figure 2) remains a good
compromise; although its maximum error reaches 7% in the case of the VAC structure
at 50% tetragonal strain, it is only for tetragonal strains of the VAC structure of more
than 25% that the error exceeds 3%. Although there are rapid changes in the slope of
ρg(lco;α = 1) versus strain, they are of very small amplitude and can be eliminated
completely by increasing the cut-off.

Figure 3. The variation of1Vf with the shear strain with the lower cut-offRl = 2.7, R = 3.0
for the six 3D structures from table 1 indicated in each panel. Solid line: simple shear; short-
dashed line:C′-shear; long-dashed line: twinning shear; chain line: tetragonal shear.



7992 M W Finnis et al

The ρf , by comparison to theρg, do not perform so well at large strains. Again, the
tetragonal strains reveal the largest errors. The higher cut-off is not a significant factor
in reducing these errors. In the most extreme case, the simple cubic structure strained to
−50%, the error exceeds 30% forρf (hco) and 40% forρf (lco) (figure 3). In the VAC
structure, the error is outside 3% already at strains of 10% for the tetragonal shear.

4.3. Density near the vacancy and surfaces

Values of the density at the first ten shells of neighbours around a single vacancy in FCC have
been calculated. The low cut-off falls between the eighth and ninth shells of neighbours,
so ρf (lco) has reached its asymptotic bulk value by the ninth shell. However, since the
reduction in density is small, we discuss only the effect at the nearest neighbours.

Although ρg(hco;α = 0.5) gives a very good bulk density, this is not a sufficient
condition for adopting it. It is guaranteed that if the cut-off is large enough, by decreasing
α we will approach the bulk density atany site near a vacancy, which would defeat the
purpose of using alocal density function. For this reason we reject theα = 0.5 Gaussian
as regards future use. Forα = 1.0, the low cut-off makes little difference to the density at
the nearest neighbour to the vacancy, changing it from 95.33% to 95.24% (referred to the
bulk density). These values are rather close to those given byρf (lco) (95.5%) andρf (hco)
(95.8%). By way of comparison, simple nearest-neighbour counting at the nearest neighours
of the vacancy suggests a density of 12/13 = 92.3% of the bulk, which is a much more
severe density deficit.

The surface results are easily interpreted in a similar way to those for the vacancy. In
the limits of smallα and large cut-off, the calculated density arbitrarily far from a surface
will approach half the bulk value. The most satisfactory of our functions,ρg(lco;α = 1.0),
predicts densities on the surface layers (100), (110) and (111) equal to 70.0%, 64.3%
and 73.0% of those of the bulk respectively. For comparison, the nearest-neighbour
coordinations on these surfaces are 66.6%, 58.3% and 75.0% respectively. Using theρf -
functions gives us surface densities as follows:

ρf (lco): 71.9%, 65.9%, 75.8%

ρf (hco): 70.9%, 65.1%, 74.6%

in rather good agreement with the values ofρg(lco;α = 1.0).
On the basis of these results we can expect any of the functions that we have studied

exceptρg(hco;α = 0.5) or ρg(lco;α = 0.5) to give rather similar corrections to vacancy
formation energies or surface energies using a local volume-dependent energy function.

5. Conclusions

We have tested a new measure of the local density of atoms,ρf . The new measure involves
three parameters and a cut-off function. The introduction of a cut-off function is necessary
for numerical convergence of lattice sums within a few shells of neighbours, but it spoils
the otherwise perfect density scaling of these functions, which was their prime attraction.
The functions were tested on six crystal structures of coordination 4 to 12, under volume
dilations over the range of−0.8 to 1.8 and under large volume-conserving shears of four
types.

We also tested the Gaussian measure of local density,ρg, in which the width and cut-off
introduce further parameters. This is a measure of density which, due to its normalization,
asymptotically reproduces the bulk value for increasing Gaussian widths. We conclude
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that a Gaussianρg of comparable range toρf is a more accurate way of calculating density
provided that the on-site term is included in the lattice sum. This conclusion is only reversed
for lattices of unphysically low density. The cut-off is a critical part of the function, and
we find satisfactory results by truncating the functions smoothly to zero at 3rnnref, three
times the nearest-neighbour distance of the reference lattice. Of the functions tested, our
best choice is a Gaussian:

ρg(lco;α = 1.0) =
(

1

π

)3/2

r−3
nnrefexp(−r2/r2

nnref) (22)

which can be smoothly truncated at 3rnnref using equation (8). With this choice of Gaussian
there is little to be gained in accuracy by increasing the cut-off.

Calculations of the density at the nearest neighbours to a vacancy in a FCC structure
give results which are rather insensitive to the choice of local density function, provided
that it is satisfactory in the homogeneous strain tests. Between 95.2% and 95.8% of the
bulk density is reached at the nearest neighbours to the vacancy, depending on which of the
four acceptable functions is used. Applying these functions to surfaces, the surface densities
of (100), (110) and (111) surface planes fall in the ranges 70.0–71.9%, 64.3–65.9% and
73.0–75.8% of the bulk density.

It will be of interest to investigate how the inclusion of this density variation affects
defect energies within density-dependent total-energy models such as have been derived
in the framework of second-order perturbation theory or the generalized pseudopotential
model.
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